引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 4735次   下载 0 本文二维码信息
码上扫一扫!
分享到: 微信 更多
深度学习方法对周围型肺癌和肺结核球的分类初探
王彬冰1, 白雪, 陈明, 郑光浩, 胡东, 张璐, 张华, 贾宏远, 刘吉平, 单国平
中国科学院肿瘤与基础医学研究所、中国科学院大学附属肿瘤医院
摘要:
目的评价深度学习方法对周围型肺癌和肺结核球的分类能力,同时比较了不同来源CT影像和病灶大小对最终分类结果的影响。方法研究数据包含了2家医院的4台不同CT机型,共114例证实为肺癌或肺结核球的金标准CT影像。对CT图像进行肺组织提取、裁剪、旋转、翻转等数据增强方法后,生成4686张训练图像。使用改进的、基于GoogLeNet深度学习网络进行训练。结果对总共146张训练集以外的测试图谱分类结果显示,模型的总体分类精确率、召回率、F值分别为88.9%、77.4%、82.8%。如果测试影像和训练影像来自不同CT机型,深度学习方法的分类能力下降(F值92.6%比74.2%)。模型对病灶最长径<3cm的病灶分类能力更高(F值88.0%比73.2%)。结论深度学习方法可以有效地鉴别周围型肺癌和肺结核球,但病灶大小以及训练集、测试集图谱来源对训练结果有一定影响。
关键词:  
DOI:10.12056/j.issn.1006-2785.2020.42.7.2019-2010
分类号:
基金项目:浙江省自然科学基金-数理医学学会联合基金(LSY19H180002);国家重点研发计划项目(2017YFC0113201);浙江省重点研发计划项目(2019C03003);辐射物理及技术教育部重点实验室开放课题资助(2018SCURPT09);浙江省医药卫生科技项目(2017PY013、2018PY005)
Abstract:
Key words: