引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 819次   下载 625 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于机器学习的MRI影像组学列线图模型预测早期乳腺癌患者腋窝淋巴结负荷的价值
罗项超1, 林桂涵, 陈炜越, 陈春妙, 应海峰, 纪建松
丽水市中心医院放射科,浙江省影像诊断与介入微创研究重点实验室
摘要:
目的探讨基于机器学习的MRI影像组学列线图预测早期乳腺癌患者腋窝淋巴结(ALN)负荷的应用价值。方法回顾2015年1月至2022年6月丽水市中心医院经术后病理检查证实的377例早期乳腺癌患者,按7∶3的比例随机分为训练集264例和验证集113例。根据病理检查结果,将患者分为低负荷组(阳性ALN≤2枚,303例)和高负荷组(阳性ALN>2枚,74例)。在Radcloud平台提取动态增强MRI第2期图像中乳腺肿瘤的影像组学特征,并依次采用方差阈值、单变量选择和最小绝对收缩和选择算子方法筛选最优影像组学特征。基于上述特征构建了5种机器学习分类器包括K近邻(KNN)、支持向量机(SVM)、逻辑回归(LR)、随机森林(RF)、极端梯度提升决策树(XGBoost),选择验证集中AUC最高的分类器作为最佳影像组学模型。进一步行多因素logistic回归分析构建基于影像组学评分(Rad-score)和临床危险因素的列线图模型。采用ROC曲线评估不同模型的诊断效能。结果低负荷组和高负荷组在MRI报告淋巴结状态间的差异有统计学意义(P<0.01)。经降维得到了16个与ALN负荷高度相关的影像组学特征。在验证集中,SVM分类器的诊断效能最好(AUC=0.762)。进一步结合Rad-score和MRI检查报告淋巴结状态建立列线图模型。ROC曲线结果显示,列线图模型在训练集和验证集中均呈现出良好的诊断效能,AUC分别为0.887、0.818。结论基于机器学习的MRI影像组学列线图模型预测早期乳腺癌患者ALN负荷具有较高的应用价值。
关键词:  
DOI:10.12056/j.issn.1006-2785.2023.45.23.2023-1278
分类号:
基金项目:浙江省医药卫生科技计划项目(2023KY425)
Abstract:
Key words: