引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
过刊浏览    高级检索
本文已被:浏览 149次   下载 0  
分享到: 微信 更多
重症急性胰腺炎并发多重耐药菌感染的列线图预测模型的建立与评价
陈燕春,邱洁净,田蓉,肖婉露,罗倩,罗微,廖小静
成都中医药大学附属第五医院
摘要:
目的 分析重症急性胰腺炎(SAP)并发多重耐药菌(MDRO)感染的影响因素,并构建预测MDRO感染的列线图模型。 方法 回顾性分析成都市第五人民医院重症医学科2017年1月~2023年4月收治的重症急性胰腺炎患者的临床资料,采用单因素分析比较MDRO组和非MDRO组的临床资料,将单因素分析中P<0.05的变量纳入到Logistic回归分析中筛选MDRO感染的独立影响因素,根据独立影响因素构建列线图风险预测模型,采用ROC曲线下面积、校准曲线及校正C指数Hosemer-Lemeshow 检验评价预测模型。结果 本研究共纳入473例SAP患者,其中47(9.9%)例发生MDRO感染共有47例患者发生多重耐药菌感染,发生率为9.9%。单因素分析结果显示两组患者在年龄、是否有慢性肾脏疾病病史、病因、APACHE II评分、GCS评分、入院24小时补液量、入院24小时液体平衡量、是否行CRRT治疗、中心静脉导管留置时间、机械通气时间方面差异具有统计学意义(P<0.05)。Logistic回归分析结果显示年龄、肾脏疾病病史、GCS评分、中心静脉导管留置时间、机械通气时间5个变量是SAP患者并发MDRO感染的独立影响因素。预测MDRO列线图模型的ROC曲线下面积为0.821(95%CI:0.758~0.882),校正C指数为0.806, H-L检验卡方值为=6.239,P=0.512。结论 本研究根据临床资料构建的SAP并发MDRO感染的列线图风险预测模型预测效能较好,可为临床工作人员早期识别MDRO感染发生的高危人群提供参考工具。
关键词:  重症急性胰腺炎  多重耐药菌  预测模型  列线图
DOI:
分类号:
基金项目:四川省卫生和计划生育委员会科研课题(18PJ450)
Establishment of a nomogram prediction model for multidrug-resistant organism infection in patients with severe acute pancreatitis
chen yanchun1,2,3, qiujiejing4,5,5,5,6,7,5,5,5,6,3, tian rong1,2,3, xiao wan lu1,2,3, luo qian1,2,3, luowei1,2,3, liao xiao jing1,2,3
1.The Fifth People'2.'3.s Hospital Affiliated to Chengdu University of Traditional Chinese Medicine;4.The Fifth People&5.amp;6.#39;7.&
Abstract:
Objective: To analyze the risk factors of multidrug-resistant organism (MDRO) infection in severe acute pancreatitis (SAP) and construct a nomogram model for predicting MDRO infection. Methods: A retrospective analysis was conducted on clinical data of patients with SAP admitted to the Intensive Care Unit of Chengdu Fifth People’s Hospital from January 2017 to April 2023. Univariate analysis was used to compare the clinical data between the MDRO group and the non-MDRO group. Variables with P<0.05 in the univariate analysis were included in the logistic regression analysis to select independent risk factors for MDRO infection. A nomogram risk prediction model was constructed based on the independent risk factors, and the model was evaluated using ROC curve area, calibration curve, and Hosmer-Lemeshow test. Results: A total of 473 SAP patients were included in this study, and 47 (9.9%) patients developed MDRO infection. Univariate analysis showed significant differences between the two groups in terms of age, history of kidney disease, etiology, APACHE II score, GCS score, fluid supplementation within 24 hours of admission, fluid balance within 24 hours of admission, CRRT treatment, duration of central venous catheter placement, and duration of mechanical ventilation (P<0.05). Logistic regression analysis showed that age, history of kidney disease, GCS score, duration of central venous catheter placement, and duration of mechanical ventilation were independent risk factors for MDRO infection in SAP patients. The ROC curve area of the predicted MDRO line graph model was 0.821 (95%CI: 0.758~0.882), the calibration C-index was 0.806, and the Hosmer-Lemeshow test chi-square value was 6.239 with a P value of 0.512. Conclusion: The nomogram risk prediction model of MDRO infection in SAP patients has good predictive performance and can serve as a reference tool for early identification of high-risk individuals for MDRO infection among clinical staff.
Key words:  Severe acute pancreatitis  Multi-drug resistant organism  Prediction model  nomogram